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Minimum energy and orthogonal projection methods are discussed for the pro-
blems of the state of stress in orthotropic shells of revolution, of variable thick-
ness, The methods provide approximate solutions and make it possible to est-
imate their error in the energetic norm,

The formulation of the orthogonal projections method which is the complem-
entary of the minimum energy method, makes possible the estimation of the
errors of the approximate solutions in the energetic norm, It was given in [1],
where the above methods were also used in connection with the three-dimens-
ional problems of the theory of elasticity, and for plates of constant thickness.

1, Fundamental relations, The potential energy of deformation
of an orthotropic shell can be written in the form [2]

W (@)= ‘é“ S (Craen® + 2C1a81182s + CasBas® + Cogtr2”) dQ + (L1
&

—é— S (D11v1® + 2Dy yee + Dasyas® -+ 4Dggv122) dQ
Q

Here @ = (u, v, w) denotes the displacements of a point of the middle surface of the
shell, the displacements being functions of ¢ and z and 2g; -periodic in @; z = [0,
L}, L denotes the length of the shell, (r, ¢, z) are cylindiical coordinates, ¢ i ad
Yix are the deformation components of the shell of revolution expressed by @, by
the coefficients A%, A,? of the first quadratic form, the radii of curvature R,, R,
and by the generatrix r (z) [3]. Finally, the coefficients Cj;; and D, depend on
the shell thickness % (@, z), moduli of elasticity E, and E,, Poisson's ratios v,
and V; and on the shear modulus G [2],

2, Basic assumptions, when the functions x, v and w are normed,
the region © = (0, 2n) x (0, L) is regarded as the domain of definition of these
functions,

we assume that the functional W («) defined by (1, 1) is specified on some sub-
space (defined below) of the space Hy = W, 4! (Q) x W' (Q) x W,,e® (R) which
is a straight product of the Sobolev [4] spaces of @-periodic functions; @ = (u, v, w)

E Ho, u = Wl (), veE Wyl (Q), w= W,,%(Q). The displace-

ment function  satisfies certain boundary conditions which can be written in the form
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To = Q where I isa boundary condition operator acting in a space of functions de-
fined on S,

Sl = Su U S12

Sh={ 2|0 <9< 2n, z=0}
S =, 2) | 0< o< 2, z =L}

We assume that the following conditions hold:

1) & (@, z) is a function measurable on dQ) and satisfying almost everywhere in
Q the condition 0 << h; <C & (9, z) < h, where h, and h, are positive constants;

2) vy and v, are constants, and 0 <Tv; <1, 0<<wv,<<1

3) E;, E, and G are positive constants;

4) Function r (2) is twice continuously differentiable on the interval [0, L] and
satisfies the following inequalities when Vz & [0, L]:

r(z)>c¢, c¢= const >0

. . ) _
|Bi' — B3| = | A7 - 474y [ 01, e = const >0

A generalized derivative d% / dz® & Lo, (0, L)  exists;

5) The boundary conditions operator / is a linear continuous mapping from #/,
onto (Lg (S))™) (m = 3, 4) and for Ve <= H, the condition W (@) = 0, Ie =
0 implies that @ = (. In particular, condition 5) will hold if the operator [ corr-
esponds to clamping of the shell in the sense that the latter cannot experience any rigid
displacements,

we denote by H the closure on the norm

hollu?=uava@ + v o + @ [Wwae (2.1

of the set of @-periodic functions differentiable in the strip 0 <{ z < L, — > <<
@ << oo and satisfying the condition Jw = 0. Obviously H C H,.
Let us consider, in H, the following symmetrical bilinear form:

‘[7 3
a(v,0") = 1= 2 é {h [811’311” + Vo (&11'€2" -+ €ag'e11") + (2.2)

1 — vy

Vo 1 — vy
€92 890" - -1z Gega'ers" | -+
vV, El A

1

1?'3 ’ 4 ” ’ ” 7 ”
—’1‘5 [Yu Y+ Ve (P vy - Ve vu1”) +

Vs

2 ’ I 1 — vyvy ’ 7
) Voo Va2 -+ 4 —"E;LZ— GY1e le'}} 28]

v

Here €3, Yix and ;s Yix  denote the components of the deformations generated

"

by the displacements ®’ and ®". ,
By virtue of the assumptions 1) —4), the form a a (®', ®")is defined for any @,
®” on H. It is also clear that a (0, ®) = 2W (@). Using the assumption 5) we
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find, that the conditions ® & H, a (o, ®) = 0 imply that ® = 0. There-
fore the form a (®', ®") generates a scalar product and norm in A, defined by
the expression

ol = a(o, ) (2.3)

The following assertion can be proved in an analogous manner [3]:

Theorem I. Letthe assumptions 1) —5) hold. Then the norms defined by
the expressions (2, 1),(2,3) are equivalent in the space H , i.e, constants 73, M, >
0, exist such that

m oz <llols <mellolls Voe H (2.4)

Theorem 1 establishes the coercivity of the operator of the theory of shells, Other
results connected with coercivity of the operators of shells are given in [5].

3. Problem of the state of stress in a shell, Letg (¢, 3)
be the vector of external load acting on the shell, We assume that g & H* where
H* j5a space conjugate to H . We denote the general solution of the problem of
the state of stress of a shell of revolution by the function @o & H for which the cond-
ition

a(wy, h) = (g, h) vh= H (3.1)

holds, We know [1] that a solution of the problem (3. 1) exists and imparts a minimum
to the functional

V(o) =a(o,0)—2(8 0), ocH

If Vy is a finite-dimensional subspace in H, then a unique function o, &= Vj
exists for which [1]

P (o) = inf P (@) (3.2)

sV

and the following relations hold;

|| @x — @0 ”?I’ = [ @ ”%I' — [l @ I (3.3)
o) = — ool (@)= — o, o4
It is clear from (3, 3) that if the quantity || @olla-® or at least its upper bound, is

known, then the error of the approximate solution ), can be estimated. To find
the upper bound of | @, ||a- 2, we use the method of orthogonal projections.

4, Method of orthogonal projections, Letusdenoteby F
the straight product of six spaces L, (Q), i,e, £ = (Ly (Q))8. E'is a set of all
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possible ordered elements of the type
(Tlv T27 TIZ’ ]lll, ]Vlg, M12) = Mv T17 T27 T127 ‘Mlv 171[2’ ]l/[12 = L2 (S?)

The set £ becomes a Hilbert space after introducing in it a scalar product and the
norm, assuming that

(M, M7y = (YT 4 TYTy - T T - MUM +
Q
A[z’il[g” "}—‘ Jllgl:‘llgu) dQ

| M = (M, MY

If the assumptions 1) —5) hold, we introduce, in the space F , the bilinear sy-
mmetric form

’ " ' 1 14 ” 4 o " ”
b(M', M) = ST[D(Xl X 4+ viX Xy + XXy - (4.2)
Vo ow ,,“ To' 1" ¢ 12
TX2X2)+ 'l JdQ+S =

Q

[D (Yryy +
YY) + v, Y, ”Y;”«i— —=-Y. Y) -4

Xy =T, — Ty, Xo= Tz_ Tyvy
Yi=My — Myvy, Yy,= DM, — My, D=E(1— vy

Mo’ My }
MM g0
7 dQ

Theorem 2. When the assumptions 1) —3)hold, the form b(M', M")
defines the scalar product in E and the norm

| M = [b (M, M)I'™ (4.3)

equivalent to the basic norm (4. 1) of the space’ E.
Proof. Using the inequality - @* — b*> < — 2ab and the assumptions 1) —3),
we obtain

. T .
b(M, M) = é%[p (Tys Ta) 4+ 2 ]dQ +

812 Lp (M, M) + *M“ }d9>§ [Q (T1, T2) + T‘Z] Q+
3-3-2- [, M) + 2| d2 >
£

Clg(T12 A T? o Tr? + My? - Mo? + M1o?) dQ = Ci I M %

2
VMe&E
P(z,y) = —},1:1— (o2 + -y —2vay), Q@)=
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A [a =zt (5 —1) 8], €= const>0

From the assumptions 1) —3) follows the inverse estimate
bM, M) < | M|? VME&E; ¢ = const >0

and this proves the theorem.
Let us introduce a linear bounded operator U acting from £ into [/*, defined
by the expression

(UM,0)= S(Tﬁn + To82z -+ T1a812 + M1y -+ (4.4)
&

Mayss + 2Myo712)d22, MEE, o= H
and denote by F, the kernel of the operator [/
Fo={M\McsE UM=20} (4.5)

Here Fp isa closed linear set in X, i.e. a subspace in E. The linearity of F,
is obvious, and its closure follows from the fact that F, is a submapping of a closed
set consisting of a single point (null element in  /*) when the mapping of [J is con-
tinaous. Consider the operator

A: 0 = Ao = {Cpeyy + Cro8ar,  Cistyn + Cagtasy  Cosfrer (4. 6)
Dyviy + DigVess DiaVix + DasVaes  2DeeVia}

which represents a linear continuous mapping of /7 onto L. Letusdenote by Fy
the image of the operator A, F; = A (H). Clearly, F, is a linear set, We shall
show that F, isa closedsetin FE. Let {A wy} denote the basic sequence of ele-
ments of  F,, By virtue of the completeness of the space E | there exists an ele-
ment M©® = F such that

lim || Ao, — M ||g =0 (4.7
It remains to confirm that M® & F,. The relations (2. 2),(2. 3), (4. 2),(4.3) and
(4. 6) imply the following identity:

|do |t = ol VYo H (4. 8)

From (4, 8) it foilows that {,} is the basic sequence in H which converges, by
virtue of the completeness of /, to the element @, & H. Now, taking into acc-
ount (4, 7) and remembering that A is a continuous operator from I into E, we
obtain

lim A(ﬁn == A(!)o — M(O)

N-r 00
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Consequently M® e F, and F, isa subspace of E.
Let M denote any element of F, and N = A@ be any element of F,.
From (4. 2), (4.5) and {4, 6) it follows that

b (M, N) = (UM, ®) = 0

therefore F; and F, are orthogonal subspaces,

Further, we shall show that the subspaces F, and Fy form an expansion £,
ive, E=F @ F,. Letusretum to the form a (@', ®") defined by the rel-
ation (2,2), The form can be written as follows:

a(o, ") = (Be,0"), Vo' o"c=H (4. 9)

where B is a continuous linear mapping from H into H* and (Be', ®") isa
scalar product of the elements Be' & H*, 0" & H. From the relations (2. 2),
(4.4) and (4, 6) it follows that B is a composition of the mappings A & L (H, E)
and U e L (E, H*)

B=U-4 (4. 10)

Let M be any element of . We shall show that it can be represented in the
form M = M® -+ M® where M® & F, and M® < F,. Consider the
problem of finding a function @ € I such that

Bo = UM (4.12)

From (4, 9) it follows that the problem (4. 11) has a unique solution @ & H. Then
M® = 4o < F, and by virtue of (4,10) and (4, 11) the following relation holds
for the element M® = M — MV =M — Ao :

UM® = UM — Ap) = 0
and from this it follows that M@ & F, and E = F, & F,.
Let us now retumn to the problem of the state of stress of a shell (3.1). From (2. 2),
(4.4) and (4. 6) it follows that the problem (3, 1) can be written in the form

UCA e Bm:‘:g’ gEH* (4'12)
Let M’ be an element of £ suchthat UM’ = g. Consider the problem of
minimizing the functional
J(My=|| M — MI|lg? MecF, (4.13)

since Fy is a closed linear set in a Hilbert space E, there ekists a unique moment
M® = F, for which
J(M©®) = int J(M) (4.14)
MeF,
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and }{'® is a projection of the element M’ onto F,. Then M’ — M©® & F,,
and a function o & H exists such that

Ao = M — M© (4.15)
From this we have

Bo=U-A)o=UM —M® =g

Consequently, if the element M(® & F, minimizes the functional (4.13), then the
function @ = H for which 4¢ = M’ — M® is a solution of the problem (4, 12),
i.e. is a generalized solution of the problem of the state of stress of a shell of revolu-
tion (in the notation of Sect. 3 ® = ®,). Moreover, taking into account (4. 8)

and (4.15), we have

J (M) = | M — M© |[z*= || Ao |z* = || o [z?

We express all the results obtained above in the form of the following theorems,
Theorem 3, Let the assumptions 1) —5) hold, g = H*,and M’ bean
arbitrary element of FE satisfying the relation UM’ = g. Then there exists a unique
element /(0 satisfying the conditions(4. 14),and if 9 & K is a solution of the prob-

lem (4,12), then Ao = M' - M® and

| M= MO [ = | o fla? (4.16)

Theorem 4, Let {F,™},_,® be a sequence of n-dimensional subspaces
of the space  F,. A unique element 3™ = F,™ exists such that

| M — M®|g*= inf |M — M|z (4.17)
McF.(z
and if
lim { inf |[N—M|g}=0, VM&F, (4.18)
" ver("
then
lim [ M —M™ — 4oz — 0 (4.19)
| M — M® — Ao |2 < | M — M® ||g? — || o ||a? (4.20)
lox —efla? < || M — M™ |g* — || o [lu? (4.21)

Here @ is a solution of the problem (4.12) and @ is an element of V), satisfying
the relation (3,2),
Proof, Taking into account (4,15), we have

M — M® g > | M — MO [g* = || o |g?
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This and (3, 3) together with the fact that ©®o = ©, yields the inequality (4. 21),
On the other hand, taking into account (4, 5) we find that

[ M — MO — Ao |2 = || MO — MO ||z (4. 22)

C;:ls.idermg that M' — MO = Fy;, M® — MM < Fyand F, | F,, we
obtain

| M — MO |2 = || (M — M®) + (MO® — M) [z = (4,23
| M — MO 32 | MO — M g2

From (4. 16), (4.22) and (4, 23) follows
[ M — MO — Ao g2 = | M©® — M® |2 =
” M’ — M ”L2 — ” M’ e MO “E?- — ||M' — M ”E2 — ” o |g?

and this, together with (3.4), yields (4.20).
The following relation holds for VM & F,™

| M — M |g* = (| M — MO ||g* + || M® — M ||z*

and this, together with (4,17) and (4. 18), yields lim || M© — M0 ||g? == 0.
Now (4. 19) follows from (4. 22) and this completes "~ the proof of the theorem.
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