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Minimum energy and orthogonal projection methods are discussed for the pro- 
blems of the state of stress in orthotropic shells of revolution, of variable thick- 

ness. The methods provide approximate solutions and make it possible to est- 
imate their error in the energetic norm. 
The formulation of the orthogonal projections method which is the complem- 
entary of the minimum energy method, makes possible the estimation of the 

errors of the approximate solutions in the energetic norm. It was given in [l], 

where the above methods were also used in connection with the three-dimens- 
ional problems of the theory of elasticity, and for plates of constant thickness. 

1. F u n d a m e n t a 1 r e 1 a t i o n s. The potential energy of deformation 
of an orthotropic shell can be written in the form [2] 

+ 1 (D11yl12 + 2Dlsyllys2 + D,,y,2 f 4DsGylB2) di2 
Q 

Here o = (u, U, W) denotes the displacements of a point of the middle surface of the 
shell, the displacements being functions of q and z and 2n -periodic in rp; x ,g 10, 
Ll, L denotes the length of the shell, (F, cp, z) are cylindrical coordinates, eilc and 
yik are the deformation components of the shell of revolution expressed by (0, by 

the coefficients Ai’, A,’ of the first quadratic form, the radii of curvature R,, R, 

and by the generatrix F (z) [3]. Finally, the coefficients Cik and Dlh. depend on 
the shell thickness h (cp, z), moduli of elasticity E, and Es, Poisson’s ratios v1 

and x’, and on the shear modulus G [2]. 

2. B. a s i c a s s u m p t i o n s. When the functions u, u and LU are normed, 
the region S1 = (0, 23-c) x (0, L) is regarded as the domain of definition of these 

functions, 
We assume that the functional W (ce;) defined by (1.1) is specified on some sub- 

space (defined below) of the space H, = W,,s’ (52) x W,,,l (Q) x W,,,’ (52) which 
is a straight product of the Sobolev [4] spaces of q-periodic functions: o = (u, n, w) 

E Ho, u E w2,si (a), n E w,,,i (Q), -w -5 w,,,s (52). The displace- 
ment function 0 satisfies certain boundary conditions which can be written in the form 
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1~ = 0 where I is a boundary condition operator acting in a space of functions de- 
fined on S, 

Sl = Sll u 812 
Sll = {(cp, 4 1 0 < cp < 2% z = 0) 
s12 = {(cp, 2) 10 < ‘p < 2% z = L} 

We assume that the following conditions hold: 

1) h (9, z) is a function measurable on dQ and satisfying almost everywhere in 
52 the condition 0 < h, < h (cp, z) < h where h, and h, are positive constants; z 

2) y1 and v, are constants, and 0 < v1 < 1, 0 < v2 < 1 
3) El, E, and G are positive constants; 

4) Function r (2). is twice continuously differentiable on the interval [0, Lj and 
satisfies the following inequaLities when tiz E [O, Ll: 

7. (4 > c: c = const > 0 

cl = const > 0 

A generalized derivative d3r / d.z3 E L, (0, L) exists; 
5) The boundary conditions operator 1 is a linear continuous mapping from HO 

onto (L (SrY) ( m = 3, 4) and for ‘v’c~:, E N, the condition w (0) = 0, Im = 
0 implies that o = 0. In particular, condition 5) will hold if the operator 1 corr- 
esponds to clamping of the shell in the sense that the latter cannot experience any rigid 

displacements. 
We denote by H the closure on the norm 

I/ 0 J(H2 = II ZJ Ilzv*qsz) -+ II ZJ II&-,w + II 1” II~W) (2.1) 

of the set of q-periodic functions differentiable in the strip 0 < z < L, - -C < 

cpcm and satisfying the condition lo = 0. Obviously H C H,. 
Let us consider, in H, the following symmetrical bilinear form: 

c 
a (!,I’, CJY) = 1 ,I ‘VI,,, 

ai [ 
’ h ell’ell” + 172 (E~~‘E~[ + E~~‘E~;) + (2.2) 

Here Q’, yik’ and Etka, yikll denote the components of the deformations generated 

by the displacements 0’ and tin. 
By virtue of the assumptions 1) -4), the form a a (o’, o”)is defined for any O’, 

CO” on H. It is also clear that a (w, o) = 2W (w). using the assumption 5) we 
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find, that the conditions o E H, a (Q, 0) = 0 imply that o = 0. There- 
fore the form cz (O’, W”) generates a scalar product and norm in I-I, defined by 

the expression 
Ij 6) II& = a (0, 0) (2.3) 

The following assertion can be proved in an analogous manner [3]: 
T h e o r e m 1. Let the assumptions 1) -5) hold. Then the norms defined by 

the expressions (2.1),( 2.3) are equivalent in the space H, i. e. constants ml, % > 

0, exist such that 

Theorem 1 establishes the coercivity of the operator of the theory of shells. Other 
results connected with coercivity of the operators of shells are given in [5]1 

3. problem of the state of stress in a shell. Letg (cp,z) 
be the vector of external load acting on the shell. We assume that g E H* where 
H* is a space conjugate to H . We denote the general solution of the problem of 
the state of stress of a shell of revolution by the function Go E H for which the cond- 
ition 

a (00, h) = (g, 4 vh E H (3.1) 

holds. We know [l] that a solution of the problem (3.1) exists and imparts a minimum 
to the functional 

q++=xz(o,w)-2(g,o), 6JEH 

If v, is a finite-dimensional subspace in H, then a unique function ok E vk 
exists for which [l] 

(3.2) 

and the following relations hold: 

1) WC - 00 II& = II 00 IIL - 11 Ok Ilk (3.3) 

‘Ic) (00) = - II wo II&, $ (@If) = - Il “k II& (3.4) 

It is clear from (3.3) that if the quantity II 00//H, 2 or at least its upper bound, is 
known, then the error of the approximate solution ok can be estimated. To find 
the upper bound of 11 ~a 11~’ 2, we use the method of orthogonal projections. 

4. Method of orthogonal projections. Letusdenoteby E 
the straight product of six spaces L, (Q), i.e. E = (L, (Q))G. E is a set of 41 
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possible ordered elements of the type 

(T,, T,, T12, M,, M,, MA = M; Tl, T,, T,,, M,, nf,, M,, E L, (62) 

Tne set E becomes a Hilbert space after introducmg in it a scalar product and the 
norm, assuming that 

If the assumptions 1) -5) hold, we introduce, in the space E , the bilinear sy- 
mmetric form 

b(M’,M”) = $+-[D’Xl’X’ + l.lXl’X2’ + vlXlnX2” + (4.2) 
$1 

X, = T, - TZvl, X, = T, - T,y, 

Y, = Ml - M2v1, Y, = M, - M1vZr D = El-’ (1 - v~J-~ 

Theorem 2. When the assumptions 1) --3) hold, the form b (M’, M”) 
defines the scalar product in E and the norm 

1) Al l/k: = Lb (M, M)J”z (4.3) 

equivalent to the basic norm (4.1) of the space’ E. 
p r o o f. Using the inequality. u2 - b2 < - 2ab and the assumptions 1) -3), 

we obtain 
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From the assumptions 1) -3) follows the inverse estimate 

b (AM, MI < c2 II M II 21 VtlA/I E E; c2 = const > 0 

and this proves the theorem. 
Let us introduce a linear bounded operator Uacting from E into I$*, defined 

by the expression 

(Uili, 0) = j (T 1% + Tz%a -I- Tl2% + MlYll + 

P 
(4.4) 

J42Y22 -I- 2Ml2?l2) dft, MEE, oczN 

and denote by Fz the kernel of the operator U 

Fz = (M]W E E, UM=O) (4.5) 

Here F2 is a closed linear set in E, i.e. a subspace in E, The linearity of F, 
is obvious, and its closure follows from the fact that Fs is a submapping of a closed 

set consisting of a single point (null element in H*) when the mapping of u is con- 
tinuous. Consider the operator 

A : o -+ A w = {CllEll + C&*2, &$ll + &,Eg2r &a& (4.61 
&lY,, + %Ym Q,h + 42Y22, 2DlJ6Yl2) 

which represents a linear continuous mapping of II onto E. Let us denote by F1 
the image of the operator A, F, = A (H). Clearly, PI is a linear set. we shall 
show that F, is a closed set in E. Let (A co,} denote the basic sequence of ele- 
ments of Pi. By virtue of the completer&s of me space 
ment A&a) E E such that 

E , there exists an ele- 

(4.7) 

it remains to confirm that iM(*) E Fl. The relations (2.2),(2.3),(4.2),(4,3) and 
(4.6) imply the fo~ow~g identity: 

From (4.8) it follows that (On} is the basic sequence in H which converges, by 
virtue of the completeness of H, to the element 0, E H. Now, taking into acc- 
ount (4.7) and remembering that A is a continuous operator from H into E, we 
obtain 

lim Am, = Aa,, = &f(o) 
n-w0 
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Consequently hf@) E F1 and Fl is a subspace of E. 
Let M denote any element of Fs and N = Ao be any element of 

From (4. Z), (4.5) and (4.6) it follows that 
F,. 

b (M, iv) = (UM, 0) = 0 

therefore F, and Fz are orthogonal subspaces. 
Further, we shall show that the subspaces Fl and Fs form an expansion E, 

i,e. E = FI @ Fg. Let us return to the form a (w’, 03 defined by the ref- 
ation (2.2). The form can be wfitten as follows: 

a (cd, d) = (l&d, cd), Vo’, 0” E w (4.9) 

where B is a continuous linear mapping from .H into N* and (Be%‘, co”> is a 
scalar product of the elements Bw’ E N*, 0” E liT. From the relations (2. Z), 
(4.4) and (4.6) it follows that B is a composition of the mappings A E L (H, E) 
and U cz L (E, If*) 

B=UoA (4.10) 

Let M be any element of &‘, We shall show that it can be represented in the 
form &I = M(l) -I- M@) where M(r) E F1 and &f(s) E F,. Consider the 
problem of finding a function w E H such that 

Bo = UM (4. Xl) 

From (4.9) it follows that the problem (4.11) has a unique solution o E 1ci. Then 
A&l) = Am E F, and by virtue of (4.10) and (4. Xl.) the following relation holds 

for the element j%f(a~ = M - M(l) = M - Aw : 

and from this it follows that &P) E Fz and E = PI @ Fz. 
Let us now return to the problem of the state of stress of a shell (3.1). From (2.21, 

(4.4) and (4.6) it follows that the problem (3.1) can be written in the form 

UcAw==Bw=:g, gEl”i” (4.12) 

Let &I’ be an element of ,?I such that Uk?’ = g. Consider the problem of 
rn~~~zing the functional 

J (M) = 11 &I’ - M [/Es, M EE Fz (4.13) 

Since Fs is a closed linear set in a Hilbert space E, there exists a unique moment 
M@) E F2 for which 

J (~(~~) eMi$ J (hf) (4.14) 
P 
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and JI,O) is a projection of the element M’ onto F,. Then M’ - ikf(” E Fr, 

and a function o E i?I exists such that 

From this we have 

A(y) = jpf’ - &f(O) (4.15) 

Bo = (U 0 A) 0 = u (M’ - M(Oj) = g 

Consequently, if the element iW”) E F, minimizes the functional (4.13). then the 
function o E H for which Am = .iW - M(O) is a solution of the problem (4.12), 
i. e. is a generalized solution of the problem of the state of stress of a shell of revolu- 
tion (in the notation of Sect. 3 o = oo). Moreover, taking into account (4.8) 

and (4.15), we have 

J (M(O)) = 11 M’ - M(O) jl~‘= 11 h 11~’ = 11 0 ljH,2 

We express all the results obtained above in the form of the following theorems. 
T h e o r e m 3. Let the assumptions 1) -5) hold, g E H*, and M’ be an 

arbitrary element of E satisfying the relation UM’ = g, Then there exists a unique 
element M(s) satisfying the conditions(4.14), and if o E H is a solution of the prob- 

lem (4.12). then Aw = M’ -- M(O) and 

11 ilf’ - M(O) (1~~ = I( (tj l(H,2 (4.16) 

T h e o r e m 4. Let {F2(n)}n_1m be a sequence of n-dimensional subspaces 
of the space F,. A unique element MPJ E F2W exists such that 

and if 

then 

lim { inf 11 N-M 11~) = 0, VMEF~ (4.18) 
n-+m NEFr) 

lim II M’ - M(n) - Am llE = 0 (4.19) 
n-CO 

11 fif’ - MC”) - A@ 11~” < 11 M’ - Men) /I_$ - II ok /lH,” 

II ok - w l/H’” < (1 M’ - MC”) 11~~ - 11 ok Lloyd 

(4.20) 

(4.21) 

Here 0 is a solution of the problem (4.12) and ok is an element of vk satisfying 
the relation (3.2), 

Proof. Taking into account (4.15), we have 

II M’ - iw’) jE2 > 11 M’ - M(O) jE” = 11 0 llff,’ 
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This and (3.3) together with the fact that 00 = W, yields the inequality (4. ?,I), 

On the other hand, taking into account (4.5) we find that 

obtain 

From (4. X6), (4.22) and (4.23) follows 

Ij M’ - N(“) - Ao /I$ = 11 j%fW - j@Y j/Es zzz 

II fir’ - ~I!U”~ JI$ - /I M’ - f%W iI32 = IlM’ - MC”) llE2 - jj (,, /I$ 

and this, together with (3.4), yields (4.20). 
The fo~o~ng relation holds for VM E Fr(“) : 

II M’ - .M 11~2 = I( M’ - lW”) llE2 + I( IWO, - M llE2 

and this, together with (4.17) and (4.18), yields ]im I/ ,Jl(ui - ,JJ(ni ljEz z-Z 0. 

NOW (4.19) follows from (4.22) and this completes n--rm the proof of the theorem. 
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